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CIRCULANT PRECONDITIONERS FOR TOEPLITZ MATRICES 
WITH PIECEWISE CONTINUOUS GENERATING FUNCTIONS 

MAN-CHUNG YEUNG AND RAYMOND H. CHAN 

ABSTRACT. We consider the solution of n-by-n Toeplitz systems Tnx = b 
by preconditioned conjugate gradient methods. The preconditioner Cn is the 
T. Chan circulant preconditioner, which is defined to be the circulant matrix that 
minimizes IIBn - T, IF over all circulant matrices B, . For Toeplitz matrices 
generated by positive 27r-periodic continuous functions, we have shown earlier 
that the spectrum of the preconditioned system C,71 'T is clustered around 
1 and hence the convergence rate of the preconditioned system is superlinear. 
However, in this paper, we show that if instead the generating function is only 
piecewise continuous, then for all c sufficiently small, there are O(log n) eigen- 
values of C, 1 T, that lie outside the interval (1 - c, 1 + C) . In particular, the 
spectrum of C,1 'T, cannot be clustered around 1. Numerical examples are 
given to verify that the convergence rate of the method is no longer superlinear 
in general. 

1. INTRODUCTION 

An n-by-n matrix Tn is said to be Toeplitz if it has constant diagonals, i.e., 
[Tn]j,k = tj-k for all 0 < i, k < n. It is said to be circulant if we further have 
[TnI, n-I = [Tn]j+lo for all 0 < j < n - 1 . In this paper, we consider the 
convergence rate of the preconditioned conjugate gradient method for solving 
Toeplitz systems Tnx = b with circulant matrices as preconditioners. Strang 
in [13] showed that for such a method the cost per iteration is of O(nlogn) 
operations. In contrast, superfast direct Toeplitz solvers require O(nlog2 n) 
operations (see, for instance, Ammar and Gragg [1]). Thus, one has to analyze 
the convergence rate of the iterative method in order to compare it with direct 
methods. 

To analyze the convergence rate, which is a function of the matrix size n, 
we assume that the given Toeplitz matrix Tn is the n-by-n principal submatrix 
of a semi-infinite Toeplitz matrix T. The function f which has the diagonals 
{tj} I =_ of T as Fourier coefficients is called the generating function of the 
sequence of Toeplitz matrices { Tn I . Chan and Strang [5] proved that if the 
Strang preconditioner Sn [13] is used, the method will converge superlinearly 
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whenever f is a positive function in the Wiener class, i.e., when the sequence 
{tj}7Io0 is absolutely summable. The superlinear result is established by first 
showing that the spectra of the preconditioned matrices S- I Tn are clustered 
around 1. 

Since then, several other circulant preconditioners have been proposed and 
analyzed under the same assumption that the Tn are generated by a fixed func- 
tion f (see T. Chan [9], Huckle [10], Ku and Kuo [11], Tismenetsky [14], 
Trefethen [15], and Tyrtyshnikov [16]). The most notable one is the T. Chan 
preconditioner C, [9], which is defined to be the minimizer I B, - TI IF over 
all circulant matrices B, . Here, 11 I IF denotes the Frobenius norm. The pre- 
conditioner C, has a distinct advantage over S, in that C, is always positive 
definite whenever T, is (see Tyrtyshnikov [16]). Chan [2] proved that under 
the Wiener class assumption, the spectra of C,- T T, and S- T T, will be the same 
as n tends to infinity, and hence for sufficiently large n, the preconditioned 
system Cn-j Tn converges at the same rate as the system Sn-I Tn provided that 
f is in the Wiener class. 

However, in our recent papers, we have shown that the two preconditioners 
are fundamentally different. By using Weierstrass's theorem, we showed in [6] 
that if the underlying generating function f is a positive '2r-periodic continu- 
ous function, then the T. Chan preconditioned systems Cn-I T, have clustered 
spectrum around 1, and hence the systems converge superlinearly if the con- 
jugate gradient method is employed. But the proof used there does not work 
for Strang's preconditioner. In [7], we resorted to a stronger form of Weier- 
strass's theorem, namely the Jackson theorem in approximation theory, and we 
were able to show that the Strang preconditioned systems Sn-1 Tn have clustered 
spectrum around 1, and hence converge superlinearly whenever f is a positive 
27i-periodic Lipschitz continuous function. One explanation of this fundamen- 
tal difference, though not a formal mathematical proof, is that we can associate 
the Strang preconditioner Sn with the Dirichlet kernel whereas the T. Chan pre- 
conditioner Cn can be associated with the Fejdr kernel (see Chan and Yeung 
[8]). It is well known in Fourier analysis that if f is 27r-periodic continuous (or 
respectively Lipschitz continuous), then the convolution product of f with the 
Fejdr kernel (or respectively the Dirichlet kernel) will converge to f uniformly 
(see, for instance, Walker [18, pp. 59, 79]). 

In this paper, we will consider functions f that are not positive 27r-periodic 
continuous, but only nonnegative piecewise continuous. We will show that for 
these generating functions, the spectra of C, I Tn will no longer cluster around 
1. More precisely, we show that for all sufficiently small e > 0, the number of 
eigenvalues of Cn-I Tn that lie outside (1 - a, 1 + e) will be at least O(log n) . 
If moreover f is strictly positive, then we can show further that the number 
of outlying eigenvalues is exactly O(log n) . Numerical examples are then given 
to demonstrate that for the preconditioned systems the number of iterations re- 
quired for convergence does increase like O(log n), and hence the convergence 
rate of the method cannot be superlinear in general. In view of the explanation 
made in the preceding paragraph, it is interesting to note that for piecewise con- 
tinuous f its convolution product with the Fejer kernel will no longer converge 
to f uniformly. 

The outline of the paper is as follows. In ?2, we list some of the useful lemmas 
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that will be used in later sections. In ?3, we show that for piecewise continuous 
generating functions f the number of outlying eigenvalues of the matrix Tn - C, 
is at least O(log n) , and hence the spectra of Tn - Cn cannot be clustered around 
zero. Using this result, we prove in ?4 that the spectra of Cn- Tn cannot be 
clustered around 1 for any nonnegative piecewise continuous function f . We 
then prove in ? 5 that if f is strictly positive, then the number of outlying 
eigenvalues of Cn-I Tn is exactly O(log n) . Numerical results are given in ?6 to 
illustrate how the discontinuities in f affect the rate of convergence. They show 
that the convergence rate is no longer superlinear, and in general the number 
of iterations required for convergence increases at least like O(log n) when n 
increases. Concluding remarks are given in ?7. 

2. PRELIMINARY LEMMAS 

Let 21, be the space of all 27i-periodic Lebesgue integrable real-valued func- 
tions defined on the real line RI. For f E 211 , its Fourier coefficients are 
defined as 

tk[f] =Jf()e -ikdO, k = 0, ?1, ?2, 

Let T9[f] be the n-by-n Toeplitz matrix with the (j, k)th entry given by 
tjk[f], 0 < j, k < n, and n[f] be the n-by-n circulant matrix that mini- 
mizes -Cn -9n[f]I[F over all n-by-n circulant matrices Cn. The matrix W [f] 
is called the T. Chan circulant preconditioner and its (j, l)th entry is given by 
cj[f], where 

(n - k)tk[f] + ktk-n[f] 0 < k < n 
Ck [ n 

Cn+k[Jl IO< -k <n 

(see T. Chan [9]). In this paper, we will consider the spectrum of n- I[f]I9;[fl 
as n goes to infinity for piecewise continuous functions f E 211. Since f is 
real-valued, tLk[f] = Tk [f] and hence Tn [f] and Wn [f] are Hermitian matrices 
for all n. For f e Y2i, let fmax and fmin be its essential supremum and 
infimum, respectively. 

Lemma 1. Let f e Y2 with fmax $ frnin . Then for all n > 1, 

frnin < Amin(gn_[A) < Amin(Wn[f A) < Amax(Qnfl) < Amax(gn_[A) < fmax, 

where Amax and Amin denote the maximum and minimum eigenvalues, respec- 
tively. 
Proof. For the two strict inequalities, see Chan [3, Lemma 1]. For the other 
inner inequalities, see Tyrtyshnikov [16, Theorem 3.1]. 0 

Notice that if fmax = fmin, then X9[fA = n [f] = fmin * In, where In is the 
n-by-n identity matrix. Thus, in the following, we assume for simplicity that 
f is nonconstant. 

Given a Hermitian matrix A, we use N(E; A) to denote the number of 
eigenvalues of A with absolute values exceeding e . A sequence of Hermitian 
matrices {An}n=1,2,... is said to have clustered spectra around a if for any 
e > 0, there exists a c > 0 such that for all n > 1, N(E; An - aIn) < c. If 
a = 0, we simply say {An }n= 1, 2,... has clustered spectra. 
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Lemma 2. Let A, and Bn be n-by-n Hermitian matrices and A and jt be any 
positive numbers. Then 

(i) N(u; ?jAn) = N(u/A; An), 
(ii) N(A + ,u, An + BO) < N(A, An) + N(y, BO) 

Proof. (i) is trivial and (ii) can be proved by Cauchy's interlacing theorem (see 
Wilkinson [20, p. 103] or Widom [19, p. 11]). 0 

It follows immediately from Lemma 2 that if {A, } and {Bn } are two se- 
quences of Hermitian matrices with clustered spectra, then {aAn + f3Bn} also 
has clustered spectra for any real numbers a and /. 

Lemma 3. Let {An}n=1, 2,... be a sequence of Hermitian matrices. If suPn IjAn IIF 
< oc, then {An } has clustered spectra. 
Proof. Since jIA, 112 is equal to the sum of the square of the eigenvalues of An, 
it follows that for any given e > 0, N(E; An) 1 sup 1 ffAII/2 . 0 

Lemma 4 (Chan and Yeung [6, Theorem 1]). Let f E 2,i be continuous. Then 
the sequence of matrices 

Aon gn fl- A f- n [fl n = I1, 2 ,. 
has clustered spectra. 

Lemma 5 (Widom [19, p. 30]). Let H, be the n-by-n Hilbert matrix 

- 1 2 3 n 

2 3 n+1 

1 1 1... ... 1 -n n+1 2n-1 

Then for any O < e < I, we have 

N(c , Hn) -log n * sech-l _ (I + of (1)), it 7t 

where o( 1) tends to zero as n increases. 

Lemma 6. Let f e Y2, be bounded. Define Wn[f] to be the n-by-n Hankel 
matrix with entries given by 

[Vn[f]]j,k = (tj+k[f]), j, k = 0, 1, ..., n- 1. 

Then l2nW[f]112 < ?1f 11f I 
Proof. By Nehari's theorem [12, Theorem 1], the infinite Hankel matrix X[f] 
satisfies 

IVo[fI112= max {x*2W[f]*X[f]x} < 1If Io. 

Hence, for any n-vector y with I IY 1 12 = 1, we have 

jfjj0 > (y*, 0)*[f]*lf[f] (Y) > Y*n *[f]Xn[f]Y* 

In particular, ln[f]112 < IfKloo. * 
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3. SPECTRA OF A,[f] 

In this section, we prove that if f E Y27, is piecewise continuous, the spec- 
trum of A, [f] = 79 [f] - F [f] cannot be clustered around zero. More precisely, 
we show that N(E; A, [f]) > O(log n) . For simplicity, we will present the proof 
for the case n = 2m. When n is odd, the proof can be modified accordingly. 

Before we start, let us give a brief motivation of our proof. Suppose we have 
an f C 52 which has only one jump discontinuity at 4 E (-7r, 7r]. Then by 
adding multiples of the function g(6) defined in Lemma 8 below, the sum of 
the functions will be a 27i-periodic continuous function. In view of Lemmas 2 
and 4, we then only have to consider N(E; An[g]) . In Lemma 8, we will show 
that the spectrum of An[g] is basically the same as the spectrum of the Hilbert 
matrix Hn with only small norm perturbation. Hence, by Lemma 5, we get the 
result. The proof below, however, will be more complicated because we need 
to show further that if f has multiple jumps, then the outlying eigenvalues 
derived from one jump will not be canceled by the outlying eigenvalues from 
the other jumps and thus leave us with a clustered spectrum. 

Let f e Y2,i be a piecewise continuous function with points of discontinuity 
in (-7r, 7r] at -7r < 01 < < 0, < 7r and jumps 

Xk = lim f (0) - lim f(o) , k = 1, V..Iv 
k k 

Let the biggest jump be at Ok, i.e., 

IJak/ = max lakl. I1<k<v 

Insert v arbitrary points 01, q02, ... , q into {01, 02, ..., 604, such that 

-ZZ < 01 < 01 < 02 < 02 < ... < OvM < Ov 7 - 

Define the functions 

go (0) = { 
r 

0-ff Oko 
t 

< 0 < 
Okon 

0, -7r < 0 <_ 4k 

0, Ok < 0 < 

AM 
2(Ok ~- Ok) 

for k= 1, 2, ... v- 1,and 

gV (0) =12(0V - Xv) X 

l2(7r- Ov) 
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if 06 < n or 

201 + 
- 

i < 0 < 01, I 2(q01 +)' 

gV (6) 0 , <0_OV 

2(7r -q$v)' $<? 

if OV = or. All functions gk(0), k = 0, ,..., , are to be extended into 
functions in Y2, 

Now we write f as 

M IJ 

go+E akkgk - ugo- 9 ak(kgk, 7r 7 
k=1 k=1 

where 

5I k k0. 6k -1= =k 
Jk= k ko. 

Then we have 

(1) A2m[Jl =A2m [f + akgo +akakgk] - fakA2m[gOJ-A2m[ ak kgk]. 7r 
k=1 

7 = 

In the next three lemmas, we consider the limiting behavior, as m tends to 
infinity, of the eigenvalues of the three terms in the right-hand side of (1), 
respectively. 

Lemma 7. The sequence of matrices 

{A2m [f + lo go + E ak(kgkl} 
k=1 m=1 

has clustered spectra. 

Proof. By Lemma 4, it suffices to show that the function 

1/ 

f + aog 7r ak(kgk 
k=1 

is a 2h-periodic continuous function. However, from the definitions of gk, 
k = 0, 1, ... , v, it is clear that the function is already 2h-periodic and that 
the points j, 5 = 1, 2, ... ., v, are its only possible points of discontinuity in 
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(-7r, 7]. However, for 6j 1 046 we have 

urna, [f(6) + 
?0 + E ak(kgk(6)] 

i f(i + ak - go(0) + E aka6 Ik A ( L k=i 

-lim f(0) + ?k go(0) + E ak *k ?gk(6) + ajji k=l 
k7j 

- urn f(0) + ? go(0j) + 

k=l 
k5j 

= lrm f(o) + 2f go(o) + E ak(5k - 0 - aj(5j 

k=l 
k54] 

=lim PO() +-~aogO(o) + E ak5gko(O)+ kkk(? 

-8 ur ()+ho 

Jo k=k 

At G4, we have 

=im POm # ) + go * ( + : kak 5k?k() 

=- 0urn (6) + ?g(-) (- gk( + Yt (k(3k *) kk1 

li fO)+ kogo(0 -ak + vkk 

= aliomk~ (f(0) +7r 0O0 akgko (0) + E a k 5k A (0)] 

194 k~~~~~kl 

kLko kko 
+ ' ? + V ( . 

-lir f(6) + ak .(r- rkt) +Zc5k .O 
it k kl 

kj~ko 

- lrn ~f(6) + -'gO (O7) - - 
agkolG + 

L9k kkl 
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Lemma 8. Let 4 be an arbitrary point in (-7r, 7r]. Let g e Z2x be defined by 

g(O) ={0 + 7r - -7r < 0 < X 

Then 

(2) A2m[g] = A2m + B2m, 

where A2m and B2m are both Hermitian matrices with 

4 
(3) N(6; A2m) -log m sech- (1 + o (1)) 

7r n~~~~~7 

for any 0<6< ,and 

(4) sup IIB2mIIF < 2 + 2vHI < o0. m 

Proof. The Fourier coefficients tk[g] of g are given by 

I 7f 0, k=O, 
tk[g] = 

1 J 
g(O)e - 

ik0 
k 

=0 , g1n ,eau T jeik~ I k =+1, ?2 

Thus, the first row of A2m[g] is given by 

(?' 
I 

(t- I1[]- t2m- 1[g]), ... -(t-j19]-t2m-j19]), 
2m 2m~~~~~~~~~2 

*' 2m -I 
(t-2m+1i[gI -tI[I)) 2m 

0 ie-i(2m-l), ie-i(2m-j), -ie,0~ 
=?-2m-1 '..' 2m-j ,.,l 

i(e-i(2m-1)4 _ ei") i(e-i(2m-j)4 _ eij4) i(e-ic _ ei(2m-l)) 

l < ' 2m ' ' 2m '' 2m ,. 

Let A2m and B2m be the 2m-by-2m Hermitian Toeplitz matrices with their 
first rows given by 

(5)( 0 ie-i(2m-l) _ ie-i(2mj) . .,ie-i) 
2m - i 2m-_j 

and 
(6) 

0, i(e-i(2m-l)4 
- ei4) i(e-i(2m-j)4 - eij4) i(e-iX - ei(2m-l)4) 

K ' 2m ' ' 2m '' 2m 

respectively. Then we have A2m[g] = A2m + B2m . From (6), we have 

2m-1 2 

|IfB2M |F = 2 , (2m - i) |2 (e-i(2mi)s - 

(7) j=1 

< 2 E 2m- = 2(2 - )< 4. 2m1 m m 
j=1 
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We next partition Ar2m as 

A-2rn=[U? Ur] +[Vm 0] 

By (5), we see that Vm is a Hermitian Toeplitz matrix with its first row given 
by 

_ie-i(2m-_1) ie-i(2m-j), ie-i(m+l), 

2m-1 ' ' 2m-j ' ' m+ 1 
Hence, 

=rnm-i ) ~[]iei(2m(j): 2iei(2m li lI2mZm-j +2m-j 
(8) 2]1 

}=1 '[2 m-I m 
=2 (2 < 2 E Z _< 2f -dx <21n2. E -2-j)2 .2m-j r x 

Thus, if we define 

B2m = B2m + [OV ], 

then, by (7) and (8), we have 

IIB2m IIF < I IB2m I IF + \/2I Vm |IF < 2 + 2ViW2. 

It remains to show that the matrix 

A2mrn-A2m[g-B2m = r 2m +B2m-B2m =A2m-[ Om VO] [U Ur] 

satisfies (3). To prove that, we first define 

Jm-F . 1 j 

Pm diag(l, ei4, ... , ei(m-2), ei(M-l)4), 

and 
QM--diag( -ie - i,- ie -im- , - ie ,-2 _ie - , 

It is straightforward to check that Um = P, Hm JmrQm , where Hm is the Hilbert 
matrix defined in Lemma 5. Hence 

A2r < 5 y %rmn[ Pm H 0r[ ? Hm Jm rn[Pm ] 
2m LUm L?Qm JmHm O J 0 QmJ 

=1 Pm Im Im 1FH Im Jm Pm ? 
2[QL?rQn im ]Imr -Hmj r Im -Jr m n n Qm 

=I Pm P Hm O 1 Pm Jm Qm 
2 

* LJm -Qm Jm 0 L Hm j PM -JmQ m 

Since 
1[ Pm Jrm Qm 1 
/[LPM -JMQMj 
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is an orthogonal matrix for all 4, we have that A2m is orthogonally similar to 

[Hm Hm] 
L -Hm. 

By Lemma 5, assertion (3) follows. 0 

Lemma 9. The matrix A2m['=l ak~kgk] can be written as 

(9) A2m [ ak6kgk] =D2m + E2m 

where D2m and E2m are Hermitian matrices with 

(10) N( 2li; D2m) 0 

and 

(11l) sUp IIE2mIIF < c < oc 
m 

for some c independent of m. 
Proof. For simplicity, let us write 

V 

h = Eak~kgk. 
k=1 

Define Wm to be the m-by-m Toeplitz matrix 
[ tm [h] tm- I [h] ... ti [h] 1 

(12) Wrn = [tm+i[h] t2[h]] 

Lt2m-[hi] t2m-2[h] tm[h] 

It is clear that the entries of the Hankel matrix Wm Jm are just Fourier coeffi- 
cients of the function h(6)e-' . Therefore, by Lemma 6, we have 

jj WmJmjI 2 < sup jh(6)e-i"J = 1jhjcoo, 
0 

where by the definitions of h and gk, 1 < k < v 

J~hJJO JhOk,_ 
lakI 

jhjo = jh (6o)j - = _2? 

Hence, if we let 

D2m Wn[~ _ ] 

then we have 

JID24n12 = lUWmit2 = 1jWmJmJmjj2 < jjWmJmjj211Jmjj2 < ja2 

Thus, N(ja |/2; D2mr) = 0 
It remains to show that E2m A2mr[h] - D2m satisfies (11). To estimate 

IlE2mrIF, we partition the Hermitian Toeplitz matrix A2m[h] as 

A2m[h[] = 12j.m 
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Clearly, Xrn is an m-by-m Hermitian Toeplitz matrix with its first row given 
by 

(?' j (tLI[h]- t2m-i[h]), 2(t2[h- t2m-r2[h]), 

(13)M 

2m (t-M+i[h] - tm+i[h])) 

and Ym is given by the m-by-m Toeplitz matrix 
(14) ___ 

F M(t-m[h] - tm[h]) Mr+1(t-m-.[h]-tm-l[h]) 2m -1 (t-2m+i [h] - t[h]) 

m- I (t-m+[h] - tm+i [h]) 

L 
2m(t-i[h]-t2m-i[h]) 2A(t-2[h] -t2m-2[h]) ... rm(t-m[h] -tm[h]) 

Therefore, 
LM Wm + Ym m E2m [Wky* Wn+ Yrm 

and hence 

(15) ~~IIE2rnII2 2 11X II+I~nyrI ( 15) |E | = 21|Xm + 21lWm + Ym1IIF 
By direct computation, the Fourier coefficients tj[h] of h are given by 

I v-i e110k - e-i~k e iJk+1l -e-iIJk 

tj[h] = 47( Z ak~k{2ie-iik + (6- -k) + (ki-O) 

+__ jo _v e-ijov - e-iov+ e-'1 - e-iJ0 i 
+ 2ie 

- 
+ e+ 

47r] (6V -q!'v) (7(6v)I 5' 
j =+1, +2, ..., when Ov < 7i . If Ov = 7i, then 

1 v-i e-i10k - ei~k e ij~k+l - e-1i0k 
1[h] 

12=11k+ 
( - 

Okk)I (kk+1 
- 

Ok)j 
k-iit -iv -i i i~ 

+ c5 4(ieinr + ie-ivr+ e - eiJ?k + e-'? - 

4717 (7r -qOv)j (q1i+ 7r)j f 
j = + 1, +2. In either case, there exists a constant c such that 

1tj[h]j < - j = +1, +2. 

Hence, by (13), 
m-1 .2 

FIXrnIIF = 2 r- (m-i) |J-(tj[h] - t2m-rj[h]) 
j=1 

(16) <2 2 1 (mj)j2 C+ 2mc ) 
= 1 2 

2ni in-] rn-i ~2c2 7M-.1 

-2c2Z (2m )2 
- 2c Z (M + j)2< ,21 ~* ~< C2 

j=i j=i j=i 
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Moreover, by (12) and (14), 

nm-i m+ 2 

t Min + 112 (m - j) tmj[h] + 2J (trmnj[h] - tmj[h]) 

nm-i 2 

+ (rnm - ) tr+j[h] + 'j (+m2+j[h] - tm+j[h]) 
j=m 

rn-i m j in]2 

(m - j) 2m t+rn-j[h] + 2m ( tr-j[h] 
j=0 

+ Z1 (m - j){2m t-m+j[h] + 2 ( t m+j[h] 
j=i 

4 m2 Z (m - j){ + j)Itmnj[h]I + (in - j)Itr=j[h] I}2 

+ 4m2 Z(in -I){(in-I)Itrn+j[h]I + (mn+I)Itrn+j[h]I}12 
j=1 

j=0 ji 

Putting this and (16) back into (15), we have IIE2m IF < 2c. El 

We now combine Lemmas 7-9 to show that the spectra of A2m[f] cannot be 
clustered. 

Theorem 1. Let f E Y2, be piecewise continuous with points of discontinuity in 

(-7r, 7(] at -7r <61 < < 0,, < 7 and jumps 

ak= lim f()- lim f(), k= 1, ...,v. 
k k 

Define jakol = maxl<k<v la|k. Then for any 0 < c < jaol/4, there exists a 
constant b, independent of m, such that 

N(e; \2m [f ]) >- 41 + o ( l)) log m . sech- 1 ( +2cg - b , 

where o( 1) tends to zero as m increases. 

Proof. Putting (2) and (9) into (1), we find 

c 
A2m = {Ar2m [f+5akgo9+?Ieaktkgk] B2mrE2m} D2mnA2m [fI 

= G2m -D2m -A2m [fA 

where 

G2m- A2m r f + ?o 90+ Z akk Ak] - E2m-n 
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We note that by (4), (1 1), and Lemmas 7 and 3, the sequence of matrices {G2m } 
has clustered spectra. Moreover, by Lemma 2 and (10), 

N( I2akO + 2c; 2-kiA2m) < N(c; G2m) + N( IaI; -D2m) + N(c; -A2mff]) 

= N(c; G2m) + N (J |?; D2m) + N(c; A2m[fI) 

= N(c; G2m) + N(c; A2mrnfI) 

for all c > 0. Thus, by (3), 

N(c; A2m[fI) > N(I + 2c; 'kAA2m) - N(c; G2m) 

-N( Ial ;A2m) - N(c;G2m) 

= 4(1 + o( l)) log m * sech-l ( + j%) - N(c; G2m) 

for all 0 < c < ja41/4. Finally, since {G2m} has clustered spectra, it follows 
that for any 0 < c < I al/4, there exists a constant b such that N(c; G2m) ? b 
for all m. Hence, the theorem is proved. 3 

4. SPECTRUM OF THE PRECONDITIONED SYSTEMS 

In this section, we consider the spectrum of the preconditioned matrices 
Wj 1 [fl$;;[f] . We note that by Lemma 1, f should be nonnegative to guarantee 
that 9;[fJ and Q4f] are positive definite. When ?n4f] is positive definite, 
gn 1/2w[f is well defined and j- I[f].9l[f] is similar to the Hermitian matrix 

n1/2 
w,-- 1"2[f] The following theorem shows that the spectrum of 

Fn [fl - 1/2^" [fly [ye- _ 112lfI8[1lv 172 If 

cannot be clustered around zero. 

Theorem 2. Let f e Ah be nonnegative and piecewise continuous. Let its points 
of discontinuity in (-7r, 7] be at -7n < 01 < *< f < 

7i with jumps 

aXk = lim f(o) - lim PO), k= I ... 

and IJIaj = maxl<k<v JakI . Then to any c with 0 < c < jacl/411fjj, there 
corresponds a constant b such that 

N(c; tn[JV]112A[f]F[J1/2) > f(l + o(l)) log 2 *sech1 (2? 2clifi) -b, 

where o(1) tends to zero as n increases. 
Proof. For simplicity, we write An[f] and Wn[f] as An and &n, respectively. 
For any nonzero vector x, let y = An 112x . Then 

X <i An ' An ra x _ y*Cny 
x*x x*x 
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If y :# 0, then by Lemma 1, 

(17) *<tgly = Y Y *y*y > Amin(F ,)* YYy 
1 

Y*Y ~~~~~~~~frnax 
Since this is trivially true also for y = 0, we always have 

~*~2-l~ 1 y~yI X*gl/2A~g2l/2X Y *n Y > 1 y Yy _ n n Kn x 

X*X fmax X*X fmax X*X 

Let z - n12x. Notice that z :# 0 since x :# 0. Therefore, we have 
Y*nly > 1 z*A2z _ 1 z*Anz z*z 

X*X fmax X X fmax Z*Z X*X 

Since again by Lemma 1, 
Z*Z X* X >X m(t21\> 1 

- ..~~ )min (nJ- X*X X*X Jmax 
it follows that 

Xn * An2n A Ann l/2x y*Fnly 1 z*Anz 
X*X X*X -mIax Z*Z 

Hence, by the Courant and Fischer theorem (see Wilkinson [20, p. 101]), we 

have, for any nonzero vectors {Vkl} -l in Cn2 

m x*l>/2x n j1An l x 1 Z*A2 Z 
max > max 

f 
X#40 X*X XO Imax Z*Z 

XE(vx1 , ..vjj)' x(v , ..,vjj) 

1 Z*A2z 1 
- max n (A2) 

z#O max Z*Z max 
z E(Cn'12 .. Cn/2 1j 

where the eigenvalues Aj are ordered as Al > 2 > ...> An * Since {Vk}Ik-l are 
arbitrary, again by the Courant-Fischer theorem, we have 

1 <n/2/ tn nK- 1/2 > 1 * j(2 
fmax 

Therefore, for 0 < c < Ik,0I/4fmax, 

N g(7112A ,2-1/2) - N(22; (-1/2A l/2)*Q2l/ An2l/2)) 

= N(E2; n Aln2A7n-An 7n2) 

>N (2; JLA2) - N(]maxE2; A2) = N(fmaxE; As). 
max 

Hence, by Theorem 1, we have 

2-1/2A?-1/2 4 fl l2 EfrnaxN 
N(E; n > - (1 + o(l))log sech-1 ( + i J ) -b. [ 

5. BOUNDS ON THE NUMBER OF OUTLYING EIGENVALUES 

In this section, we show that if f is strictly positive, then the number of 
outlying eigenvalues of Fn-I [f]9n[f] cannot be more than O(log n) . We begin 
with the following lemma. 
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Lemma 10. Let f E Y2. be piecewise continuous with points of discontinuity in 
(-, 7r] at - < 01 < ...< < 7r andjumps ak, k = 1, ..., v. Thenforall 
sufficiently small 6 > 0, there exist positive constants c1 and c2, independent 
of m, such that 

cl logim < N(E; A2m[fI) < c210gm9. 
Proof. For k = 1, 2, ... , we define 

0 +7r k 7C <6? <Ok, 
) - { -k, Ok < 0 < O?7( 

and write f as 

8, 

v v 
52mffl= 52m + ak ak2[] 

A~rn~f]=A2m [k + k - -E2 A2m[4k2 k=1 ik =i 

where Aks2m and Bkc2m satisfy the properties in (3) and (4), respectively. 
Hence, by Lemmas 2-4, for any 0 < e <i j2laO (where as before jckOj = 
maxl~k<,, Ia, I), there exists a positive constant c such that 

N(E;A~~m~fI)?N( ak ] ck 2m) 

( ~ ~~ ~~ _v ~ J k=1[] 
5E 

+mN (/ = +1 ; t jd Ak E 2mk) 

< c+ Z N(+ 1;27A ,2i) 

= C+ EN tak|M +1) ;A~ ) 

k=1 

= c~ +fllom( + o1l) *k sech (Ak 2mk + 1k2 )) 

By combining this result with Theorem 1, the lemma follows. 0 

As a corollary, we can show that the matrix i [f]3) af] - I, will have at 
most O(log n) outlying eigenvalues provided that fmsu > 0 
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Theorem 3. Let f E Y2 be piecewise continuous with fmi, > 0. Then for all 
sufficiently small e > 0. there exist positive constants C3 and c4 such that 

C3 log < N(f; n f /2A[f]n[f]/2) < c4 log 

Proof. The proof is similar to the one of Theorem 2 with (17) replaced by 

<In A y*= 1y *YA < Amaax(l) * Y*Y < 1 * 
Y~~~~y Tm~~~~~rin 

'~ 

where the last inequality above follows from Lemma 1. 

6. NUMERICAL RESULTS 

In this section, we illustrate by numerical examples how the discontinuities 
in the generating function f affect the convergence rate of the method. In the 
examples, test functions f defined on (-7r, 7r] are used to generate Toeplitz 
matrices .9n[f] and the systems g.9[[f]x = b, where b = A( 1, 1, ...,1, 1)*, 
are then solved by the preconditioned conjugate gradient method with or with- 
out the preconditioner Fn [f1 . All computations are done by Matlab on a Sparc 
II workstation at UCLA. The zero vector is used as the initial guess and the 
stopping criterion is l rq l2/ Ilro I12 < 1 0-7, where rq is the residual vector after 
q iterations. Table 1 shows the number of iterations required for convergence. 
In the table, the first row gives the generating functions and the second row in- 
dicates the preconditioner used. The function ffl , 0 < y < fi, is a piecewise 
linear function defined by 

f 0+,B -7r<<0<O 

where /3 and y are the maximum and minimum values of fAfl, y} on (-7r, 7r], 
respectively. 

TABLE 1. Number of iterations for different generating functions 

4e 1 (O + g)2 + I L S ( )2 | 
+ 1 6+ fi,o.i} (6 + f{1A o, o} 

n None Fn None En [J None Fn [J None Fn [f None En [f 
16 8 8 16 9 8 7 16 10 8 7 
32 20 7 33 10 16 8 35 14 16 8 
64 37 7 45 11 26 9 77 19 27 9 
128 56 6 49 11 36 10 167 27 39 10 
256 67 6 50 13 47 11 356 41 55 12 
512 70 6 51 13 59 13 743 65 76 15 
1024 . 71 5 51 13 68 14 1486 107 106 18 

We note that the first generating function 04 + 1 is a 27x-periodic function 
and the convergence rate obtained here is typical for such a class of functions 
(see Chan [2]). The other four functions are all piecewise continuous. Note 
that the second and the third functions are strictly positive. Therefore, n[f], 

n [f], and hence n- I[f]g9 [f] are all well conditioned in view of Lemma 1. 
In particular, the corresponding systems will converge linearly, i.e., the method 
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3 + + S+ + 

43++++a-+ I + 

3 + + 

0- 
0) 1 2 3 4 5 6 7 

FIGURE 1. Spectra of preconditioned systems for n = 64 

will converge in a finite number of steps independent of the matrix size. So, 
although the 0(log n) effect can be seen for the preconditioned systems for small 
n, it will level off when n gets larger. For the last two functions, since their 
fmin = 0, the matrices T4[f] will no longer be well conditioned. In fact, we see 
that for the nonpreconditioned systems, the numbers of iterations required for 
convergence increase like 0(n) and O(Vrni), respectively (cf. Chan [3, p.338]). 
In these cases, the number of iterations for the preconditioned systems grows 
even faster than 0(log n) . 

For comparison, the spectra of the preconditioned systems for n = 64 were 
computed and shown in Figure 1 with the first test function 04+ 1 at the bottom 
(i.e., y = 1 in the figure) to the fifth one f{loo} at the top. For the last four 
functions, we can see that their corresponding spectra are less clustered than 
the first one. 

7. CONCLUDING REMARKS 

We have proved in this paper that when the T. Chan circulant preconditioner 
is used to precondition Toeplitz matrices that are generated by nonnegative 
piecewise continuous functions, the resulting matrices cannot have spectrum 
clustered around 1 and the number of outlying eigenvalues grows at least like 
0(log n) . We then show by numerical examples that these outlying eigenvalues 
do affect the convergence rate of the method, and in general the convergence rate 
is no longer superlinear and the number of iterations required for convergence 
increases at least like 0(log n). For such systems, it is better to use band 
Toeplitz preconditioners instead of circulant preconditioners, for they guarantee 
linear convergence rate whenever f is nonnegative piecewise continuous (see 
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Chan and Ng [4, Theorem 1]). We finally remark that, recently, Tyrtyshnikov 
[17] has established a generalized Szego theorem and used it to prove that if 
f is in L2 with fmin > 0, then the number of outlying eigenvalues grows no 
more than o(n) . Theorem 3 in this paper can be viewed as a stronger form of 
his result under a stronger assumption. 
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